Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 46(8): 1446-1455, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35637262

RESUMO

BACKGROUND: The endoplasmic reticulum senses alterations to cellular homeostasis that activates the unfolded protein response (UPR). UPR proteins are known to aid in regulating glucose and lipid metabolism. CREB3 is a UPR-associated transcription factor whose potential role in regulating energy metabolism remains unclear. METHODS: Eight-week-old wild-type (WT) and Creb3+/- mice were placed on control and high-fat diets (HFD) for 8 weeks, and metabolic phenotypes characterized by weekly weighing, indirect calorimetry, body composition scans, glucose tolerance tests, plasma analysis, tissue lipid quantifications and gene/protein expression analysis. RESULTS: HFD weight gain in Creb3+/- males was reduced by 34% (p < 0.0001) and females by 39.5% (p = 0.014) from their WT counterparts. No differences were found in HFD food intake or total fecal lipids between genotypes. Creb3+/- mice had increased energy expenditure and respiratory exchange ratios (p = 0.002) relative to WT. Creb3+/- mice had significant reductions in absolute fat and lean tissue, while Creb3+/- females had significant reductions in body fat% and increased lean% composition (p < 0.0001) compared to WT females. Creb3+/- mice were protected from HFD-induced basal hyperglycemia (males p < 0.0001; females p = 0.0181). Creb3+/- males resisted HFD-induced hepatic lipid accumulation (p = 0.025) and glucose intolerance compared to WT (p < 0.0001) while Creb3+/- females were protected from lipid accumulation in skeletal muscle (p = 0.001). Despite the metabolic differences of Creb3+/- mice on HFD, lipid plasma profiles did not significantly differ from WT. Fasted Creb3+/- mice additionally revealed upregulation of hepatic energy expenditure and gluconeogenic genes such as Pgc-1a and Gr (glucocorticoid receptor) (p < 0.05), respectively. CONCLUSIONS: Reduced expression of CREB3 increased energy expenditure and the respiratory exchange ratio, and protected mice from HFD-induced weight gain, basal hyperglycemia, and sex-specific tissue lipid accumulation. We postulate that CREB3 is a novel key regulator of diet-induced obesity and energy metabolism that warrants further investigation as a potential therapeutic target in metabolic disorders.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Dieta Hiperlipídica , Metabolismo Energético , Obesidade , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Feminino , Intolerância à Glucose/genética , Metabolismo dos Lipídeos , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Fatores de Transcrição/metabolismo , Aumento de Peso
2.
Biochem Cell Biol ; 99(6): 725-734, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738827

RESUMO

Delta-6-desaturase (D6D) activity is deficient in MCF-7 and other cancer cell lines, but it is not explained by FADS2 gene mutations. This deficient activity was not ameliorated by induction of the FADS2 gene; therefore, we hypothesized that some of the induced FADS2 transcript variants (tv) may play a negative regulatory role. FADS2_tv1 is the reference FADS2 tv, coding for full-length D6D isoform 1 (D6D-iso1), and alternative transcriptional start sites result in FADS2_tv2 and FADS2_tv3 variants encoding D6D-iso2 and D6D-iso3 isoforms, respectively, which lack the catalytically critical N-terminal domain. In MCF-7 cells, FADS2_tv2 and FADS2_tv3 were expressed at significantly higher levels than FADS2_tv1. Overexpression of FADS2_tv2 in HEK293 cells confirmed that D6D-iso2 is non-functional, and co-transfection demonstrated a dominant-negative role for D6D-iso2 in D6D-iso1 activity regulation. FADS2_tv2 was expressed at higher levels than FADS2_tv1 in HeLa, MDA-MB-435, MCF-10 A, and HT-29 cells, but at lower levels in A549, MDA-MB-231, and LNCaP cells. Overexpression studies indicated roles for FADS2 variants in proliferation and apoptosis regulation, which were also cell-line specific. Increased FADS2_tv2 expression provides a new mechanism to help explain deficient D6D activity in MCF-7 and other cancer cell lines, but it is not a hallmark of malignant cells.


Assuntos
Ácidos Graxos Dessaturases , Linoleoil-CoA Desaturase/metabolismo , Ácidos Graxos Dessaturases/genética , Células HEK293 , Humanos , Isoformas de Proteínas
3.
Lipids ; 55(3): 279-284, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32069377

RESUMO

Lysophosphatidic acid (lysoPtdOH) levels have previously been reported to decrease in rodents with short-term fasting. We investigated whether a 16 h fast would change expression of autotaxin, the predominant phospholipase D responsible for adipose-derived lysoPtdOH synthesis, or any of the lysophosphatidic acid receptors (1-6) in four white adipose tissue (WAT) depots and interscapular brown adipose tissue (BAT) in male C57Bl/6J mice fed ad libitum, or fasted for 16 h. Aside from small inductions of Lpar1 in epididymal WAT and Lpar2 in epididymal and inguinal WAT, no significant changes were observed in expression of the Lpar family members, or autotaxin in perirenal, retroperitoneal, epididymal, or inguinal WAT or BAT with fasting. Comparison of the relative expression of Lpar1-6 in various depots showed that Lpar6 was the predominant Lpar in both WAT and BAT, and suggests that further work on the adipose-specific role of Lpar6 is warranted.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Diester Fosfórico Hidrolases/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Jejum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...